STUDIO MARCONI LABORATORIO di ARCHITETTURA ed INGEGNERIA

Comune di CASTAGNETO CARDUCCI (Provincia di LIVORNO)

MESSA IN SICUREZZA DELLA SCUOLA
DELL'INFANZIA, PRIMARIA e SECONDARIA
DELL'ISTITUTO COMPRENSIVO
"G. BORSI" DI CASTAGNETO CARDUCCI

PROPRIETA':

COMUNE DI CASTAGNETO CARDUCCI

STATO DI PROGETTO

PROGETTO DEFINITIVO

ESECUTIVO

OGGETTO:

RELAZIONE TECNICO ILLUSTRATIVA e DI CALCOLO

SCALA	DATA	CODICE N.	TAVOLA O
Varie	18.10.2015	05.10.U	UT
<u>-</u>	el Procedimento reno Fusi		ecnico ianna Marconi
Consulente e	Collaboratore Tecn	ico: Dott.Arch.Ma	ssimo Marconi

SERVIZI DI CALCOLAZIONI NUMERICHE ED ELABORAZIONI GRAFICHE

Via Marzia, 18 - 06121 Perugia - Tel. e Fax +39.075.5721742-075.5733696 r.a. E-mail: studio.marconi@virgilio.it - Web Site: http://ec2.it/studiomarconi

NON E' PERMESSO CONSEGNARE A TERZI O RIPRODURRE QUESTO DOCUMENTO NE' UTILIZZARE IL CONTENUTO O RENDERLO COMUNQUE NOTO SENZA ESPLICITA AUTORIZZAZIONE.

OGNI INFRAZIONE COMPORTA IL RISARCIMENTO DEI DANNI SUBITI.

SOMMARIO

COL	I	ARIO	1

- 1 RELAZIONE GENERALE 2
- 2 RINFORZO STRUTTURALE SOLAIO IN LATERIZIO CON ANGOLARI IN ACCIAIO S235 E RELAZIONE SUI MATERIALI3
- **3 PIANO DI MANUTENZIONE 17**

1 RELAZIONE GENERALE

L'edificio scolastico in oggetto è costituito da due corpi di fabbrica, uno dei quali ha una struttura in cemento armato ed ospita la scuola dell'Infanzia dell'Istituto Comprensivo "G. Borsi" di Castagneto Carducci, l'altro ha una struttura in muratura ed ospita la scuola Primaria al piano terra e la scuola Secondaria, al piano primo, dell'Istituto Comprensivo "G. Borsi" di Castagneto Carducci.

Le due strutture sono unite da una parete e sono ubicate, in via Umberto I, n.14, in Castagneto Carducci (LI).

Il complesso è stato oggetto di:

- indagini ,quali prove di carico dei solai e prove videoendoscopiche,per analizzare le condizioni strutturali: nel 2004.
- lavori per il Miglioramento Sismico della struttura fino al dicembre 2009. L'intervento ha previsto: cerchiature con fibre di carbonio, inserimento di profili pultrusi per la riduzione della luce libera, nella zona dei corridoi e cerchiature di maschi murari e connessioni del paramento murario interno ed esterno mediante connettori e antisfondellamento del solaio in determinate zone.

La struttura dell'edificio in muratura ha due orizzontamenti praticabili e un solaio di soffittatura con il tetto a due falde inclinate.

L'edificio in c.a. si sviluppa su due livelli fuori terra, un solaio di soffittatura e il tetto a due falde inclinate.

Attualmente è stata condotta una campagna di indagine sperimentale che si può suddividere in :

- Saggi visivi ed indagini videoendoscopiche su solai
- Indagini termografiche
- Indagini georadar
- Prove di carico statico su numero 2 solai

Gli esisti delle indagini sperimentali sono contenuti nella relazione del Laboratorio SGM S.r.l n°10338 RO1PA/15 R0 del 18/10/2015.

2 RINFORZO STRUTTURALE SOLAIO IN LATERIZIO CON ANGOLARI IN ACCIAIO S235 E RELAZIONE SUI MATERIALI

Il rinforzo strutturale consiste nell'applicazione di due profili in acciaio ad L disuguali di acciaio S235 70x30x3 mm all'estradosso del travetto in laterizio, il quale è armato all'intradosso, con due barre di acciaio ϕ 16 mm lisce. Il solaio è di controsoffitto ed è realizzato con questi travetti disposti ad interasse di 100 cm, che sostengono un tavellone dello spessore di 4 cm e lunghezza 100 cm.

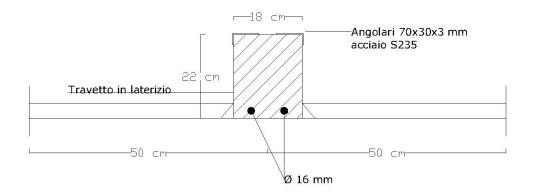


Figura 1 Schema di intervento di rinforzo.

Analisi dei carichi

Totale	140	Kg/mq
Sovraccarichi	50	Kg/mq
Peso lana di roccia	5	Kg/mq
Peso tavelloni	25	Kg/mq
Peso travetto	60	Kg/mq

La trave è semplicemente appoggiata

Si procede al calcolo della forza di compressione che grava sui profili di acciaio a seguito dell'inflessione della trave per momento positivo. Come detto precedentemente la trave è semplicemente appoggiata con una luce di 6.90 m.

Calcolo sollecitazioni

Med	8605508	Nmm
$M_ed=PI^2/8$	860.5508	Kgm
luce_trave	6.9	m
p (Kg/m)_totale	144.6	Kg/m
acciaio	4.6	Kg/m
p (Kg/m)	140	Kg/m
interasse	1	m
Carichi	140	Kg/mq
Calcolo sollecitazioni		

Determinazione tensione di compressione sugli angolari in acciaio S235

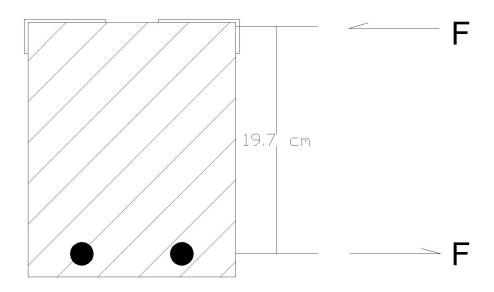


Figura 2 Schema di calcolo.

F=Med/z		
z=	197	mm
F=Med/z	43683	N
Tensione di compressione si	u un ang	golare
A_angolare	291	mmq
σ=F/A	75.1	N/mmq

Ogni angolare è soggetto ad una tensione di compressione, dovuta al momento flettente positivo, di 75.1 MPa, tensione che è molto ridotta se paragonata alle caratteristiche meccaniche dell'acciaio S235

Tabella 11.3.IX - Laminati a caldo con profili a sezione aperta

Norme e qualità	Spessore nominale dell'elemento			Spessore nor	
degli acciai	t ≤ 40 mm		40 mm < t≤80 mm		
	$f_{vk} [N/mm^2]$	$f_{ik} [N/mm^2]$	$f_{vk} [N/mm^2]$	$\mathbf{f}_{tk} \left[\mathbf{N} / \mathbf{m} \mathbf{m}^2 \right]$	
UNI EN 10025-2					
S 235	235	360	215	360	
S 275	275	430	255	410	
S 355	355	510	335	470	
S 450	440	550	420	550	
UNI EN 10025-3					
S 275 N/NL	275	390	255	370	
S 355 N/NL	355	490	335	470	
S 420 N/NL	420	520	390	520	
S 460 N/NL	460	540	430	540	
UNI EN 10025-4					
S 275 M/ML	275	370	255	360	
S 355 M/ML	355	470	335	450	
S 420 M/ML	420	520	390	500	
S 460 M/ML	460	540	430	530	
UNI EN 10025-5					
S 235 W	235	360	215	340	
S 355 W	355	510	335	490	

Figura 3 Caratteristiche meccaniche acciaio S275.

Caratteristiche meccaniche acciaio S275

fyk= 235 N/mmq

 $\gamma_{M} = 1.05$

 $f_{yd} = 223.8 > 75.1 \text{ N/mmq}$

I profili verranno incollati per una lunghezza della trave pari a 5 m tramite resina epossidica tipo SIKADUR 30

Scheda Tecnica Edizione 15.03.11

Sikadure-30

Sikadur®-30

Indicazioni generali

Pasta epossidica adesiva per placcaggi metallici e CFRP

Come adesivo per rinforzi s	
metallici, incluso:	strutturali con il sistema CarboDur* o con placcaggi
	calcestruzzo, muri in mattoni e legno struzzo
	licare
	Harandaki asasasani
Ottima adesione a calcestr	ruzzo, muratura, pietra, acciaio, ferro colato, alluminio,
	nza di elevata umidità atmosferica
	hnik Z-36 12-29, 2006: General construction authori-
IBMB, TU Braunschweg test	report No. 1871/0054, 1994: Approval for Sikadur*-30
	1504-4.
263/05/04/05/05/05/05	
Componente A:	bianco
	nero
Componenti A+B miscelati:	grigio chiaro
Imballaggio industriale non pi	prodosate, bancali da 480 kg (80 x 6 kg) redosato (bancali da 14 latte)
	one se conservato correttamente negli imballi originali asciutto e a temperature tra +5°C e +30°C. Proteggere
	Piastre metalliche su calce Facile da mescolare e appi Applicabile senza primer Alta resistenza al creep so Ottima adesione a calcestr legno e lamine Sika*Carbo Applicabile anche in preset Alta resistenza di adesione Tixotropico, non cola in app Ritiro praticamente assente Componenti di diverso colo Alte resistenza meccaniche Alta resistenza meccaniche Alta resistenza meccaniche Alta resistenza meccaniche Sation for Sika Carbodur. IBMB, TU Braunschweg test Epoxy Adhesive. Testato in conformità con EN Componente A: Componente A: Componente A: Componente A latte da 30 kg Componente B latte da 10 kg 24 mesi dalla data di produzi non aperti né danneggiati, all'

Sikadur*-30 1/5

Dati tecnici Base chimica	Resina epossidica		
Peso specifico	1,65 kg / L ± 0,1 (A+B me	escolati, +23°C)	
Sag flow (colatura)	Applicato su verticale non cola per applicacazioni in spessori fino a 3-5 mm (a 3 in conformità a FIP, Federazione Internazionale del cls. Precompresso)		
Stabilità termica	Tg (Temperatura di transi	izione vetrosa in conformità a F	FIP)
	stagionatura	Temperatura indurimento	Tg
	7 giorni	+45°C	+62°C
	HDT (Temperatura di Fles	ssione sotto carico in conformit	à ad ASTM-D 648)
	Stagionatura	Temperatura indurimento	HDT
	3 ore	+80°C	+53°C
	6 ore	+60°C	+53°C
	7 giorni	+35°C	+53°C
	7 giorni	+10°C	+36°C
Resistenza a	Stagionatura	Indurimento a +10°C	Indurimento a +35°C
compressione (EN 196)	12 ore		80-90 N/mm ²
(2.11 130)	1 giorno	50-60 N/mm²	85-95 N/mm²
	3 giorni	65-75 N/mm²	85-95 N/mm²
			85-95 N/mm²
	7 giorni	70-80 N/mm²	85-95 N/mm²
Resistenza al taglio	Cedimento del calcestruz	zo (~ 15 N/mm²) in conformità	a FIP 5.15
	Stagionatura	Indurimento a +15°C	Indurimento a +35°C
	1 giorno	3-5 N/mm ²	15-18 N/mm ²
	3 giorni	13-16 N/mm²	16-19 N/mm ²
	7 giorni	14-17 N/mm²	16-19 N/mm²
	18 N/mm² (7 gg a +23°C)) in conformità a DIN 53283	
Resistenza a trazione	Stagionatura	Indurimento a +15°C	Indurimento a +35°C
(DIN 53455)	0.000		
	1 giorno	18-21 N/mm ²	23-28 N/mm ²
	3 giorni	21-24 N/mm²	25-30 N/mm ²
	7 giorni	24-27 N/mm²	26-31 N/mm ²
Adesione (DIN EN 24624)		N/mm² (valori medi>30 N/mm² irato correttamente (sabbiatura	
	Adesione sul calcestruzz	o: in conformità con FIP (Fed a del calcestruzzo (>4 N/mm²)	erazione Internazionale

Modulo Elastico a 23°C	A compressione A trazione		nformità a ASTM D nformità a ISO 527	
Compressibilità	secondo FIP, Federo Internazionale del Calc			inte (Federazione 15° a 15 kg.
Spessore applicabile	Massimo 30 mm Usando più confezioni, cessiva finché la prece manipolazione.			
Variazione di volume	Ritiro: 0,04% secondo	FIP (Federazione Inte	ernazionale del ds. I	Precompresso)
Potlife	secondo FIP, Federazio	one Internazionale de	I cls Precompresso	
	Temperatura	+8°C	+20°C	+35°C
	Potlife	~120 minuti	~90 minuti	~20 minuti
	Tempo di lavorabilità	~150 minuti	~110 minuti	~50 minuti
	Il potlife inizia quando I perature e aumenta all Per allungare la lavora porzioni. Un altro meto sotto i 5°C)	le basse. Diminuisce abilità alle alte tempe	all'aumentare della rature dividere la q	quantità miscelata uantità miscelata i
Temperatura di servizio	da -40°C a +45°C (se r	maturato ad almeno 2	23°C)	
Coefficiente di espansione termica	2,5 x 10 ⁻⁵ x°C (range -	20°C/+40°C)		
Informazioni di Sist	ema			
Struttura del sistema	Sistema Sika Carboo Per i dettagli applical la relativa scheda teo	tivi delle lamine Sik	a Carbodur con S	ikadur•-30 vedere
Dettagli applicativi				
Qualità del sottofondo	Vedere la scheda ted	cnica delle lamine S	Sika Carbodur	
Preparazione del sottofondo	Vedere la scheda ted	cnica delle lamine S	Sika Carbodur	
Condizioni di applio	cazione / Limiti			
Temperatura del sottofono				
2 1 17 17	Min. +8°C, max + 35°C			
Temperatura ambiente	Min. +8°C, max + 35°C	10 m		
Temperatura del prodotto	Min. +8°C, max + 35°C			
Contenuto di umidità del sottofondo	Max 4%. Se applicato spazzolato bene.	su calcestruzzo un	nido applicare il pro	odotto sul supporto
Punto di rugiada	Attenzione alla conden sopra al punto di rugia		del sottofondo deve	essere almeno 3°C
Rapporto di miscelazione	comp. A : comp. B = 3: Usando imballi grandi I accurata pesatura dosa	'esatto rapporto di mi	iscelazione deve es	sere assicurato con
Tempo di miscelazione	Unità predosate Miscelare i componenti tato su un trapano a bi una consistenza liscia versare in un recipiente per minimizzare l'inglo applicata entro il pot life	i A e B per almeno 3 assa velocità (max 60 e di un colore grigio e pulito e miscelare pe bamento d'aria. Misc	minuti con un misco 00 giri/min.) finché il uniforme. Evitare di er un altro minuto ci	prodotto diventa d i inglobare aria. Po rca a bassa velocità
		3		Sikadur*-30 3/5

Figura 4 Scheda tecnica resina di incollaggio.

La forza di compressione di un singolo piatto è di:

F_compressione=21841.5 N

La tensione di aderenza che si esplica per una lunghezza della trave pari a L=5 m sulla superficie di contatto tra laterizio e lamina in acciaio è di 0.047 MPa:

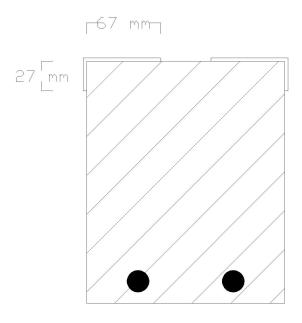


Figura 5 Determinazione tensione di aderenza.

F_comp_piatto 21841.39 N perimetro incollaggio 94 mm lunghezza_trave 5000 mm $\tau_aderenza=F_comp_piatto/(perimetro_incollaggioxlunghezza trave)$ $\tau=$ 0.046 N/mmq

La tensione di aderenza che si sviluppa tra il profilo in acciaio ed il travetto in laterizio per una lunghezza di 5 m è molto ridotta e quindi compatibile con le proprietà meccaniche dei materiali in gioco.

Prove di strappo tangenziale svolte incollando tramite resina epossidica fasce in trefoli di acciaio ad un elemento in laterizio hanno evidenziato che la tensione media di aderenza tra i due materiali è di circa 0.8 N/mmq.

Poichè la tensione di aderenza che si sviluppa per tutta la lunghezza della trave

τ=0.046 MPa<<0.8 MPa

la verifica risulta soddisfatta.

Per garantire la solidarizzazione degli angolari alla trave è necessario vincolare i due elementi tramite fasce in trefoli in acciaio tipo Fidsteel 3x2 G nella zona centrale della trave dove il massimo momento positivo comprime il piatto che potrebbe sbandare per carico di punta.

Per evitare lo sbandamento si dispone una fascia di trefoli in acciaio della larghezza di 10 cm in mezzeria, altre due ad una distanza da quest'ultima di circa 1.1 m ed infine altre due fasce di trefoli di acciaio sempre della larghezza di 10 cm distanti dalle seconde fasce di circa 1.35 m fino a coprire una lunghezza di 5 m che corrisponde alla lunghezza massima degli angolari.

Nella zona massima di momento positivo la tensione degli angolari è di 75.1 N/mmq, che genera una forza di compressione in un singolo elemento di

Fcompressione= 75.1 N/mmgx291mmg=21841,4 N

Il carico di punta per instabilità si determina con la seguente relazione:

$$Ncr = \pi^{2*}E^*Jmin/I0^{2}$$

l=1100 mm passo della fascia l0=l luce libera di inflessione per vincolo di doppia cerniera J=18230.3 mm⁴

Ncr= $\pi^{\Lambda^{2*}}$ 210000*18230.3/(1100) Λ^{2} =31 KN>21.4 La verifica risulta soddisfatta

Rispetto alla fascia in trefoli di acciaio disposta in mezzeria se ne devono applicare altre due, localizzate simmetricamente rispetto a quest'ultima, ad una distanza di circa 1.1 m. Le ultime due fasce sono applicate all'estremità degli angolari in acciaio che hanno una lunghezza complessiva di 5 m.

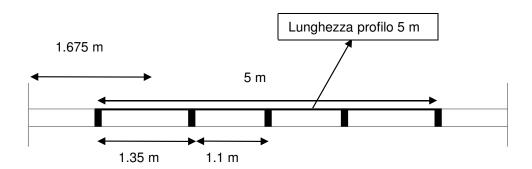
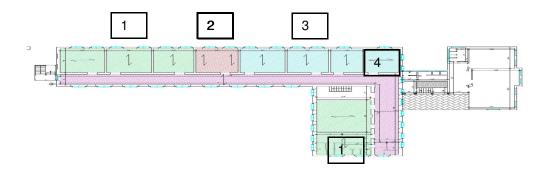
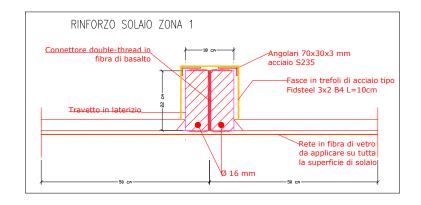
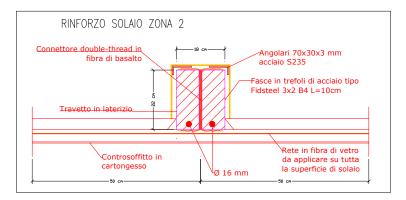


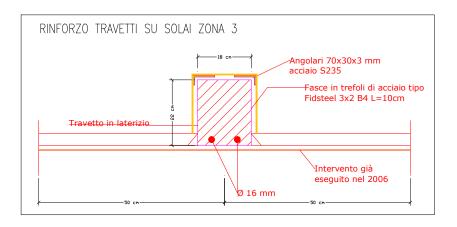
Figura 6 Distribuzione staffaggi.

La tensione media che si ha ad una distanza di 1.675 m dal bordo della trave è di 69.6 N/mmg:


X	1.675	m	Distanza dal bordo della trave
Mx	6327605.625	Nmm	Momento alla distanza x
F=	32119.82551	N	Forza totale sui profili
			Tensione su di un unico
σ=F/A	55.2	N/mmq	profilo
			Forza massima profilo in
F	16.06	KN	acciaio
lo	1.5		lunghezza libera inflessione
Ncr	16.79		Carico critico di Punta


Predisponendo altre fasce in trefoli di acciaio alla distanza variabile tra 1.35 e 1.5 m da quelle precedenti si ottiene che il carico critico Ncr=16.8 KN>16 KN che rappresenta la forza di compressione dell'angolare ad una distanza dal bordo della trave di circa 1.675 m.


Tensione di rottura caratteristica a trazione (MPa)	2400
Modulo elastico (MPa)	190000
Massa del prodotto finito (g/m²)	3000
Allungamento a rottura %	>1,60
Spessore equivalente di rinforzo (mm)	0,377


L'intervento che prevede la disposizione di questa tipologia di rinforzo con l'applicazione degli angolari in acciaio incollati tramite resina epossidica all'estradosso dei travetti in laterizio e la disposizione degli staffaggi in fasce di trefoli di acciaio è previsto in tutte le zone delle aule: zona 1, zona 2, zona 3, come possibile verificare nell'immagine sottostante. Nella zona 1 e 2 è previsto anche l'inserimento di connettori double thread in fibra di basalto ed una rete in fibra di vetro da applicare su tutta la superficie di solaio come presidio a qualsiasi tipo di danneggiamento dell'orizzontamento. Nella zona 2 va predisposto un controsoffitto per coprire la porzione di solaio crollata. Nella zona 3, invece l'intervento è quello base e prevede l'applicazione degli angolari in acciaio incollati tramite resina epossidica all'estradosso dei travetti in laterizio e la disposizione degli staffaggi in fasce di trefoli di acciaio come da progetto. La zona 4 del corridoio sarà invece messo in sicurezza disponendo all'intradosso del solaio una rete in fibra di vetro, mentre i travetti saranno rinforzati tramite fasce in trefoli di acciaio tipo Fidsteel 3x2 B4 applicati allintradosso dei

travetti stessi e connessi alla muratura tramite barre in trefoli di acciaio inghisati nella muratura con resina epossidica.

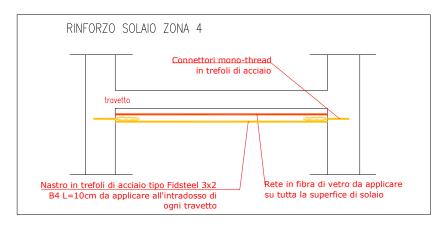
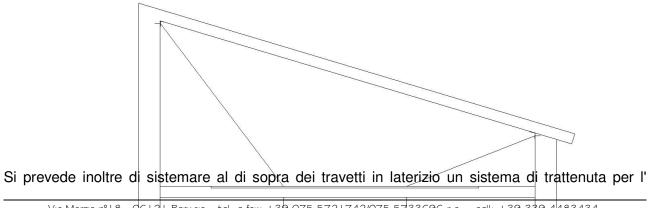



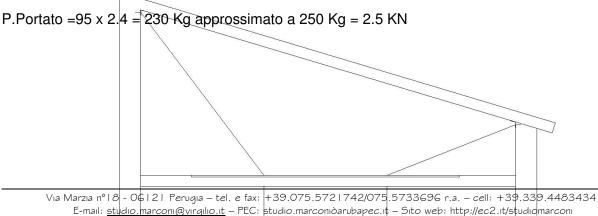
Figura 7 Interventi in progetto.

eventuale caduta del solaio di sottotetto nella zona delle aule, come visualaizzato nell'immagine sottostante.

Figura 8 Sistema di trattenuta.

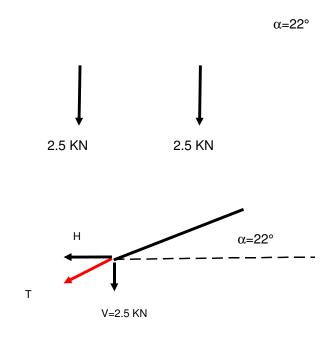
Il sistema consiste nel disporre funi di acciaio della portata massima di 19 KN a sostegno del travetto in laterizio, in modo da modificare lo schema statico dell'elemento e far si che la trave diventi su quattro appoggi. Il collegamento delle funi al sistema muratura-travetto varese di copertura è affidato sia a dei tasselli meccanici tipo HSA HILTI M16 mm, sia ad una piastra di acciaio che viene incollata all'intradosso del travetto varese con resina epossidica tipo Sikadur 30.

Verifica del sistema di trattenuta:


Peso travetto 60 Kg/mq
Peso tavelloni 25 Kg/mq
Peso lana di roccia 5 Kg/mq

Considerando un interasse di 1 m, ed il peso proprio dei due angolari di acciaio pari a 4.6 Kg/m, si ottiene:

P.P_totale travetto laterizio $90 \text{Kg/mq} \times 1 \text{m} + 4.6 \text{Kg/m} = 95 \text{Kg/m}$


230

Luce di calcolo=2.4 m

230

240

T=V/cos(90- α)=6.5 KN H=T cos α =6 KN

La fune scelta per realizzare l'intervento è di diametro 8 mm capace di resistere ad una carico di rottura di 19 KN > 6.5 KN

Lo sforzo di taglio V viene affidato ad un tassello metallico tipo Hilti HSA M16/150 mm, mentre la componente orizzontale H della forza che esplica la fune viene controbilanciata dalla forza di aderenza che sviluppa il piatto di acciaio incollato tramite resina epossidica alla base del travetto varese di copertura.

Il piatto di acciaio incollato al di sotto della trave varese è quadrato di dimensioni 100x100mm. La tensione di aderenza che si sviluppa sul piatto è:

$\tau = F/(100*100) = 6500 N/(100 x 100) = 0.65 N/mmq < 4 N/mmq$

4N/mmq è l'adesione del calcestruzzo ottenuta tramite incollaggio della lamina con resina epossidica. Tale valore è ottenuto per rottura del calcestruzzo.

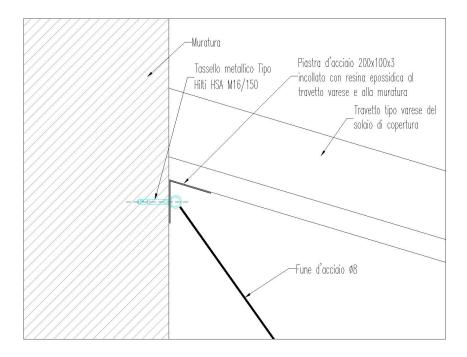


Figura 9 Particolare costruttivo.

3 PIANO DI MANUTENZIONE

A seguito delle indagini sperimentali eseguite ed ai diversi sopralluoghi effettuati in sede, in merito al piano di manutenzione, si prescrive di effettuare:

- PROVE TERMOGRAFICHE OGNI DUE ANNI su tutto l'edificio scolastico;
- CONTROLLO ANNUALE delle strutture onde valutare ulteriori necessari lavori;
- CONTROLLO ANNUALE e pulizia dei discendenti e dei canali di gronda di tutto l'edificio.